ABSTRACT

Aim: The aim of this study was to investigate and compare the antioxidative properties of the mistletoe plant obtained from three different host species namely *Psidium guajava*, *Vernonia amygdalina* and *Moringa oleifera lam*.

Study Design: Experimental Design

Place and Duration of Study: Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences and Department of Biochemistry, College of Health Sciences, University of Jos, Nigeria.
INTRODUCTION

Oxidative stress has been linked to various diseases that are associated with lifestyle such as diabetes, cancer and cardiovascular diseases alongside others as a result of the activities of free radicals. These are unstable molecules that are highly reactive. They can be generated in the cells during enzymatic processes for example in the respiratory chain. These free radicals are toxic in high concentrations leading to degenerative diseases but beneficial in lower concentrations; they are involved in immune response, cell signalling as well as maturity of cellular structures [1]. However their activities are quenched by antioxidants which are endogenously and exogenously (mostly via diet) made available to the body. Antioxidant activities have been linked to medicinal plants. Based on previous study a high population of the world population rely on medicinal plants for treatment and management of diseases [2]. The African mistletoe (Tapinanthis globiferus) has been identified as one of the numerous medicinal plants used in traditional medicine for treatment of oxidative stress-induced diseases. It’s an evergreen plant found growing as a shoot parasite on vascular plants, widely distributed along the West African Region and used to treat diabetes, hypertension, cancer and for treatment of metabolic disorders, epilepsy, irregular menstruation and menopause [3]. Its use dates back centuries before the practise of Christianity [4]. Tapinanthis globiferus belongs to Loranthaceae family. During draught farmers harvest and destroy them to avoid loss of produce [5]. Tapinanthis globiferus used for medicinal purpose is not based on species difference rather based on the host species and study carried out in Nasarawa State North Central Nigeria, revealed that it is widely and most commonly used plant for treatment of ailments [6]. Taken in form of infused tea, other uses includes; minimizing the side effects of chemotherapy and radiation, for the treatment of respiratory ailments, management of muscles and pains, as antispasmodic to ease menstrual disorders, soothe the nervous system, as an anti-inflammatory agent (especially in the gastrointestinal system) and to boost immunity [7]. The aim of this study was to compare the antioxidative properties of Tapinanthis globiferus from three different hosts Psidium guajava (guava), Moringa olifera (drumstick tree) and Vernonio amygdalina (Bitter leaf).

MATERIALS AND METHODS

2.1 Equipment

The equipment used for the study include Water bath (Clifton® Water Bath, Sous vide Australia), Spectrophotometer (Jenway UV/Visible Spectrophotometer 7315, Bibi Scientific, United Kingdom), Micropipettes (10 - 100μl and 10 - 1000μl), Digital weighing balance, Bench centrifuge and refrigerated centrifuge (MSE centrifuge, East Sussex United Kingdom) and Digital pH metre (Hauser® Digital pH meter).
2.2 Chemicals and Reagents

The chemicals used for the study include: Disodium hydrogen phosphate dodecahydrate, Aluminum Chloride, Sodium hydrogen carbonate, Sodium Dihydrogen phosphate dehydrate (all from Guangdong Guanghua Sci. Tech Co. Ltd); Tris Hydrochloride, Potassium acetate, 1,10 Phenanthroline, Follin-Ciocalletiu Phenol Reagent, Trichloroacetic acid, Naphthylethenelene diamine hydrochloride, sulfanilamide, Thiobarbituric acid (Lobal Chemie); Sodium Lauryl Sulphate, Gallic acid monohydrate (Tianjin Kermel); Glacial acetic acid, hydrogen peroxide, sodium hydroxide, methanol, sodium nitroprusside, sodium carbonate, L-ascorbic acid(BDH laboratories); Absolute methanol (Aldrich Sigma).

2.3 Preparation of Plant Samples

Tapinanthus globiferus leaves were obtained from three different hosts located at two different locations in Jos North L.G.A, Plateau State, namely: *Psidium guajava* and *Vernonia amygdalina* located at Alheri, Jos and *Moringa olifera lam* located at the Univesity of Jos Bauchi Road Campus Jos.

The *Tapinanthus globiferus* whole plants were identified at the Herbarium Department Federal College of Forestry Jos, Jos Plateau State, and the voucher specimen was deposited at the herbarium and given the number whereas the host plants were identified at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Jos. and voucher numbers were obtained for each of the host specimen *Vernonia amygdalina, Psidium guajava* and *Moringa olifera l.*.The leaves of the *Tapinanthus globiferus* plants were dried in a well-ventilated room, grounded to powder and properly stored in an air tight container.

3. METHODS

3.1 Methanolic Extraction

Extraction was done using methanolic extraction method [8].

Prior to further analysis, for each of the extracts, 1mg was re-dissolved in 1mL of distilled water.

3.2 Phytochemical Screening

Each plant extract was subjected to phytochemical screening based on the method described by [9, 10 and 11].

3.3 Total Antioxidant Assay

The comparative analyses of the antioxidant properties of the samples were determined using various methods.

3.3.1 Determination of reducing property

Iron-reducing property of the extracts was determined using the method described by [12]. The extracts were mixed with 2.5ml 200nM sodium phosphate buffer (pH 6.6) and 2.5ml 1% potassium ferricyanide. The mixture was incubated at 50°C for 20 minutes then 2.5 ml 10% trichloroacetic acid was added then 1ml of distilled water and 1 ml 0.1% ferric chloride was added to the mixture. The absorbance was measured at 700nm, and the ferric reducing antioxidant property was subsequently calculated and expressed as μg of Ascorbic Acid equivalent (AAE) using the formula:

\[
\text{Reducing property} = \frac{\text{Absorbance of sample} \times \text{concentration of standard}}{\text{Absorbance of standard} \times \text{sample stock}}
\]

3.3.2 Iron chelating property

Iron Chelating property of the extracts was determined using the method of [13]. Freshly prepared 500μM FeSO₄ (150μl) was added to a reaction mixture containing 168 μl 0.1M tris HCl (pH 7.4), 218 μl saline and the 40 μl of the extracts. The reaction mixture was incubated for 5 minutes then 13 μl 0.25% 1, 10 phenanthroline was added and absorbance measured at 510nm in a spectrophotometer and the chelating ability was calculated as % chelation using the formula:
ether anaesthesia and the brain was rapidly isolated and placed on ice and weighed. This tissue was subsequently homogenized in cold saline (1/10w/v) in a pestle and the homogenate was centrifuged for 10 minutes at 5000 g to yield a pellet that was discarded, and the supernatant was kept for lipid peroxidation.

TBAR species produced were measured at 532 nm and the % induction was calculated using the formula:

\[
\text{% induction} = \left(\frac{\text{Absorbance of Induced Reference - Absorbance of Basal Reference}}{\text{Absorbance of Basal Reference}} \right) \times 100
\]

The same process was observed using sodium nitroprusside in the place of FeSO₄. Quercetin, a known naturally occurring antioxidant was used as a standard to compare the activities of the extracts using both FeSO₄ and sodium nitroprusside.

3.4 Data Analysis

The results of the replicates were collated and expressed as mean ± standard deviation (SD). One way analysis of Variance (ANOVA) (followed by Dunnett’s and Tukey’s multiple comparison tests) was used for result analysis and significance difference at \(P=.05\), using Graphpad prism 7(Graphpad Software, 2365 Northside Dr. Suite 560, San Diego, CA 92108).

4. RESULTS

Most phytochemicals such as flavonoids, tannins etc. have been identified as natural antioxidants found in plants. Thus, the qualitative analysis of the phytochemicals was carried out as and results shown in Table 1.

4.1 Phytochemical Screening

Table 1 shows the phytochemicals present in the extracts of the Tapinanthus globiferus from the different hosts.

4.2 Antioxidant Activities

4.2.1 Reducing property of the mistletoe extracts

The results as indicated by Table 2, showed that mistletoe from Psidium guajava (MSPG; 0.16 µg
AAE/mL at 11.36 µg/mL; 0.20 µg of AAE/mL at 22.72 µg/mL had significantly (P<0.05) higher reducing property than other extracts any of the extracts (MSVA; 0.13 µg of AAE/mL (11.36 µg/mL) and 0.16 µg/mL (22.72 µg/mL) when compared with

Table 1. Phytochemicals present in the extracts

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>MSPG</th>
<th>MSMO</th>
<th>MSVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Phenolics</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Saponins</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

*Indicates the presence of the phytochemical; ++ Abundant presence of the phytochemical; - Absence of the phytochemical

Table 2. Reducing property (µg of AAE/mL) of the mistletoe extracts from the host plants

<table>
<thead>
<tr>
<th>Sample</th>
<th>11.36 µg/mL</th>
<th>22.72 µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPG</td>
<td>0.16±0.009a</td>
<td>0.20±0.01a</td>
</tr>
<tr>
<td>MSMO</td>
<td>0.063±0.006b</td>
<td>0.16±0.002b</td>
</tr>
<tr>
<td>MSVA</td>
<td>0.13±0.003c</td>
<td>0.18±0.003b</td>
</tr>
<tr>
<td>GA</td>
<td>0.13±0.06c</td>
<td>0.25±0.03a</td>
</tr>
</tbody>
</table>

Values are presented as mean of replicates ±S.D.; Values with the same subscript letter in the same column are not significantly different (P<.05); MSPG- Mistletoe from Psidium guajava; MSMO – Mistletoe from Moringa olifera l.; MSVA- Mistletoes from Vernonia amygdalina ; GA – Gallic Acid

Table 3. Iron chelating activity of the mistletoe extracts from the three host plants

<table>
<thead>
<tr>
<th>Sample</th>
<th>40 µg/mL (%)</th>
<th>60 µg/mL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPG</td>
<td>62.1±1.5a</td>
<td>69.4±2.8a</td>
</tr>
<tr>
<td>MSMO</td>
<td>45.7±1.9b</td>
<td>58.9±6.4b</td>
</tr>
<tr>
<td>MSVA</td>
<td>63.9±5.7a</td>
<td>68.9±1.9a</td>
</tr>
</tbody>
</table>

Values are presented as mean of replicates ±S.D.; Values with the same subscript letter in the same column are not significantly different (P<.05); MSPG- Mistletoe from Psidium guajava; MSMO – Mistletoe from Moringa olifera l.; MSVA- Mistletoes from Vernonia amygdalina

Fig. 1. Nitric oxide scavenging activity of the mistletoes from the three host plants
4.2.2 Iron chelating activity of the mistletoe extracts

Result showed in Table 3 showed that the mistletoe extracts from *Moringa olifera* had a significantly lower chelating activity (MSMO; 45.7% at 40 µg/mL and 58.9% at 60 µg/mL) compared with other mistletoe extracts from *Psidium guajava* and *Vernonia amygdalina* (MSPG: 62.1%, 69.4%; and MSVA: 63.9%, 68.9%) at P<.05.

4.2.3 Nitric oxide scavenging activity of the mistletoe extracts

Result showed in Fig. 1 showed that the mistletoe extract from *Psidium guajava* had significantly higher scavenging activity (MSPG; 72.1%) at the highest concentration (75 µg/mL) at P<.05 whereas extract from *Moringa olifera* (MSMO) had the lowest scavenging activity at all concentrations tested compared with the gallic acid used as the known standard.

4.2.4 DPPH radical scavenging activity of the *Tapinanthus globiferus* extracts

The result of the DPPH scavenging activity using Gallic as the standard for comparing as shown in Fig. 2 indicated that there was no significant difference at P<.05.

4.2.5 Lipid peroxidation and Thiobarbituric Acid Reactions (TBAR) of the mistletoe extracts

4.2.5.1 Lipid peroxidation and TBAR with FeSO4

From the study carried out using FeSO4, there was 94.4% induction. The result of the analysis
as shown in Fig. 3 indicated that at $P<.05$ with mistletoes from the different hosts had no significant difference when compared to the standard, quercetin (86.6% at 125 µg/mL), however, MSPG had higher inhibition (77.8% at 125 µg/mL).

4.2.5.2 Lipid peroxidation and TBAR with sodium nitroprusside

From the study carried out using Sodium nitroprusside, had 63.6% induction. There was significant difference at $P<.05$, as shown Fig. 4, with mistletoes from Psidium guajava having higher inhibition (61.6% at 125 µg/mL) with IC50 at 30.27 µg/mL whereas the extracts from Moringa olifera (54.64%) had the least inhibition. Inhibition increased with an increase in the concentration of each extract.

5. DISCUSSION

Antioxidative properties have been associated with plants of medicinal values as such studies have been carried out on different medicinal plants as such antioxidants are sourced, mostly, from plant-based foods. The antioxidant properties of plants have been attributed to the presence of phytochemicals [17]. However, their activities have been linked to their ability to scavenge free radicals; most notable being the polyphenols [18], as observed in the result in Table 1. Polyphenols in foods contribute to oxidative stability [19].

The reduction of the ferric ion to ferrous ion increased with increase in the concentration of the extract (Table 2) which agrees with the studies carried out [20]. Natural antioxidants possess the ability to reduce Ferric (Fe^{3+}) ion to ferrous (Fe^{2+}) ions. However, mistletoes from Psidium guajava, showed higher reducing property (0.20 µg/mL) at the highest concentration.

Antioxidants are also regarded as good chelators. The extracts showed the ability to chelate iron by decrease in the absorbance with an increase in the concentration of the extract (Table 3) when compared to the reference without any extract containing only 1,10 phenanthroline and Iron (IV) sulphate. This agrees with the studies on the iron chelating properties of Tapinanthus globiferus by [21]. 1,10 phenanthroline is a chelator of Fe^{2+} that bind to form Fe-O-phenanthroline complex, which is a red chromogen. In the presence of a chelator, it cannot bind to the ferrous ion and this leads to decrease in the absorbance of the sample mixture [22]. From this study, mistletoes from Moringa olifera l. (58.9%) had the lowest chelating activity at the highest concentration (60 µg/mL) compared to the mistletoes from Psidium guajava and Vernonia amygladina.

There was a decrease in the nitric oxide concentration with a corresponding increase in the concentration of the extracts (Fig. 1). The result indicates that the extracts have nitric oxide scavenging activity when compared with a known antioxidant, gallic acid. Nitric oxide is a natural
radical generated in a biological system from the amino acid L-arginine by vascular endothelial cells, phagocytes and certain cells of the brain [23], which is capable of inhibiting effect of oxidative stress but can also promote the process in the presence of a free radicals such as superoxide anions to form a peroxynitrite, which can cause DNA damage [24]. In the assay the extract from *Psidium guajava* (72.1% in 75 μg/mL) had a higher scavenging property, compared to other mistletoes, in the highest concentration.

The DPPH method is referred to as an indirect method because DPPH is not a biological radical (cannot be generated *in-vivo*) [25]. The extracts were able to scavenge the radical which agrees with previous studies [26]. Though there was no significant difference in the activities, *Psidium guajava* had a higher scavenging activity as seen in Fig. 2.

Lipid peroxidation refers to the oxidative deterioration of lipids. Studies have suggested that lipid peroxidation, which is a product of oxidative stress has been identified as a process involved in pathological conditions such as cancer [27]. Iron decomposes lipid peroxides, which produces peroxyl and alkoxyl radicals, which determines peroxidation chain termination [28]. When compared with the values of the quercetin standard, the mistletoe extracts all had the ability to inhibit lipid peroxidation, which agrees with previous studies by [19] by scavenging the free radicals generated by the FeSO₄ and the Sodium nitroprusside. This could be attributed to a decrease in absorbance of the MDA that which was formed during lipid peroxidation, which binds to the thiobarbituric acid to form a pink chromogen. There was higher inhibition of lipid peroxidation by mistletoe from *Psidium guajava* (FeSO₄; 77.8% ; SNP; 61.6%) at the highest concentration when compared to others as shown in Figs. 3 and 4 respectively. The outcome of this analysis may be due to the high phenolic and flavonoid contents which agrees with the finding that *Psidium guajava* leaf extracts have high phenolic acids responsible for their rich antioxidant properties [29], as polyphenolic plants tend to have high antioxidant activities.

6. CONCLUSION

In the course of this study, it was observed that the extract of the mistletoe leaves from the different hosts all had antioxidative activities, typical of plants. However the leaves from the *Psidium guajava* showed higher antioxidative ability compared to other mistletoes. Thus the use of the mistletoe from *Psidium guajava* for treatment of cancer by the locals could be due to its high antioxidant properties attributed to its high polyphenolic content. However, *in vivo* studies could be carried out to ascertain the authenticity of these activities as environments differ within the two methods, which affect experimental conditions directly.

ETHICAL APPROVAL

The animals were used in accordance with the procedure approved by the Animal Ethics Committee of the University of Jos, Jos Nigeria.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

5. Mohammed SZ, Eldur BZ, Abbashar AA. Distribution and host range of loranthaceae (Tapinanthus globofenis (A.Rich) Van Teigh) along the nile banks in central sudan. International Journal of scientific and

25. Kasote MD, Katyre SS, Hegde MV, Bae H. Significance of Antioxidative potentials of...
Plants and its relevance to Therapeutic applications. International Journal of Biological Sciences. 2015;11(8):982–9911. DOI:10.7510/ijbs.12096

Available:www.apjonline.in

Available:http://dx.doi.org/10.5402/2012/137289

Available:https://doi.org/10.1007/s00580-015-2192-y

© 2019 Oche et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/48750